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ABSTRACT

In this paper, we consider analytic initial conditions with finite energy, whose complex

spatial continuation is a superposition of a smooth background flow and a singular field.

Through explicit calculation in the complex plane, we show that under some assumptions,

the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.
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1. INTRODUCTION

One fundamental question in fluid mechanics is whether there exists a velocity field ff(£, t)

and a corresponding vorticity field _(£, t) satisfying the incompressible 3-D Euler equations

_t + ff.V._ -- _.Vff (1)

= o (2)

v x = (3)

so that for some time t > 0 these fields are singular when ff(£, O) and _3(£, O) are initially

smooth and the energy is finite, i.e.

/ d 3 £[ff(£, 0)[2 < oc (4)

The answer to this and related question of enstrophy blow up in the limit of infinite Reynolds

number have important ramifications in turbulence 1.

There have been many investigations in the literature to address this question. Exact so-

lutions are known 2 for which a smooth flow becomes singular in finite time; the velocity field

in all such cases do not vanish at infinity and therefore the energy constraint (4) is violated.

This constraint is important since Childress et al 3 showed that without the energy constraint,

there are explicit singular solutions of the 2-D Euler equations which is impossible 4,s,s for

flows with finite energy. There have been also been a number of mathematically rigorous

work 7's on this issue. While there are no definitive theorems one way or the other, a number

of necessary conditions for finite time singularities have been proved. There have also been

quite a number of numerical investigations 9-12 as well. Nonetheless, a definitive conclusion

based on these is difficult to reach. Motivated by physical insight in the analogous mag-

netohydrodynamics equations, arguments based on an assumed multi-scale expansion were

presented 13 for the occurrence of finite time singularity for flows with bounded velocity at

infinity, rather than bounded energy.

Recently, there have been investigations involving singularities in the complex spatial

domain. Such studies become relevant to the issue at hand if complex singularities are

found to impinge the real physical domain later in time. Caflisch 14 simplifies the 3-D Euler

equation through a so called "Moore approximation". Within this approximation, a finite

time singularity is predicted. However, the relevance of this calculation to the actual 3-D

Euler equation is unclear since the initial data in the real domain is complex and the initial

value problem is locally ill-posed unlike the actual 3-D Euler equations. Tanveer & Speziale 15

recently looked at a special class of initial condition that are analytic and real in the real xl,

x2, x3 domain (£ = (xl, x:, x3) ) with a complex spatial plane continuation (i.e. complex Xl,



x2, x3) that includes singularities on a set of points _ that are zeros of a a scalar function

of _'. At such points, the analytically extended velocity is finite but vorticity infinite. The

initial condition is decomposed into a smooth spatial flow and a singular part. Under certain

assumptions on existence of solutions in this extended complex domain, it was shown that this

decomposition remains invariant with time, though initial singularities become advected with

the smooth part of the velocity field (call it the background flow). To the extent that these

assumptions hold for any class of initial conditions, the ::esults posed no additional restriction

on the choice of the background flow other than that it is spatially analytic in a neighborhood

of complex points where the remaining part of the velocity and vorticity fields are singular.

Indeed for steady background flows, it was seen that the dynamics of the complex singularities

resulted in sufficient conditions for instability through analysis of three ordinary differential

equations. Interestingly enough, these differential equations are identical to those found by

Lifschitz & Hameiri is and Vishik & Friedlander 1_, who investigated instability of 3-D Euler

flows using a WKB analysis for short wavelength distt_rbances. The latter results have also

been established rigorously.

Recently, aside from presenting arguments for finite time singularity for a class of flow

with bounded velocity but not energy, Bhattacharjee et al is applied the complex singularity

approach of Tanveer & Speziale 15 to a background flow that is spatially smooth in the

complex plane, but temporally singular. They presented arguments suggesting that if the

the assumptions made by Tanveer & Speziale x5 are valid, complex singularities can impinge

the real i domain in finite time resulting in an additional collapsing length scale besides that

of the background flow. However, no information on the dynamic evolution of the singular

part of velocity and vorticity is obtained. Further, it is not clear if an initially analytic

divergence free velocity field in the real domain satisfying the energy constraint (4) can be

decomposed in the complex _ domain into a spatially smooth background flow that has

explicit solution and a singular part.

In this paper, largely motivated by the recent work of Bhattacharjee et al TM, we present

analytic initial conditions ff(_, 0) in the unbounded r,_al domain satisfying the energy con-

straint (4) for which the analyticity strip width of solution to (1)-(3) is found to shrink to

zero in a finite time under some clearly stated assumptions. Since the assumptions above

have not been verified, the results do not provide a ,:lear answer to the question of finite

time singularity for finite energy smooth initial conditions; nonetheless, we suspect that the

results will be of value in settling this issue since the as _umptions can be checked numerically

through appropriately designed calculations.



2. INITIAL CONDITIONS

Consider initial velocity field given by

ff(£, 0) = ffs (£,0)+ f(d[.g, 0]) q_(£,0), (5)

where

_s (_,0) =
1 fl fl 1

(-ix, - _ x:, _x, - _x2, x3) ,

f(d) = d 1/2,

d(_,0) = 9(_2) ,

where_=(x,,x2, x3),r 2 = x_ + x_ + x_ and

a 2 (1 + s)
g(_) = 1 + 2_ + a_(_s + _3),

for some small real and positive constant a s and

(6)

(7)

(8)

(9)

_(._,0) = [ h(r s) - rS]G(2,0) + 2h'(r s) 1 x W(1), (10)

where

h(r:) = 2g(_s) _
g,(rS ) + (11)

[1 1 ]_lf(X)----- ---_XsX3, -_ Xl X3, -- --_ (X 2 -_ X 2) , (12)

The initial condition (5) corresponds to an axi-symmetric flow with swirl. Nonetheless, we

do not make much use of this symmetry since we closely follow the formulation of Tanveer &

Speziale is that was developed for the general 3-D Euler equation. Now, we list below some

claims that are shown to be true.

Claim i. The function _'(_, 0) is real and analytic everywhere in the real (xi, xs, x3) domain.

It is also analytic in the finite complex g plane except at points where gr(r2) = 0. These

points are far away from the real domain for small a 2.

First notice from (9) that

= - aS [1 + 2aSr 2 + 4aSr ' + 2a2r s] (13)g,(rS) [1+ 2_: + a:(_*+ _)]_

Notice that the above is nonzero for real :F for which r 2 > O. When a s is small, a zero in

the complex (xl, xs, x3) plane occurs only at points far away from the real domain, i.e. for

Jim xjl large, atleast for some j. Further, while there can be poles of g(rS), h(r s) defined in

(11) is clearly analytic at such points. Thus, the function h(r _) is analytic except at points



where g'(r 2) = 0. The same is clearly true for h'(r_). This establishes claim (i) since

if, (3, 0) and 1_(:_) are obviously analytic functions of £, i.e. of complex variables xl, x2 and

X3.

Claim ii. The initial condition zT(_, 0) is analytic everywhere in the real (Xl, x2, x3) domain

with singularities in the complex plane determined by the relation g(r 2) = 0, g(r 2) = oc

and g'(r 2) = 0.

We note that d(Y, 0) = g(r 2) is analytic and nonzero everywhere except at points in the

complex plane when the denominator in (9) vanishes. For small a 2, zero of the denominator

in (9) occurs near r 2 = 1_ while the other zeros occur far away from the real domain.2'

d(_,, 0) is also zero in the complex (xl, x_, x3) plane at points where r 2 = -1. Raising d

to a fractional power, we obtain singularities of f(d[_,0]) at r _ = -1 (where g(r 2) = 0) and

at other complex points where g(r 2) = 0o. From the decomposition in (5) and claim (i)

above, claim (ii) follows.

Claim iii. The energy constraint (4) is satisfied.

To show that constraint (4) is satisfied, it suffices to show that for real _" with r _ 0o,

if(Y, 0) = O(r-3). From the expression of g(r 2) in (9) and g'(r 2) in (13), it is not difficult

to show from (11) that for large r, h(r 2) = 0@-2), h'(r 2) = O(r-4). Further, from (12),

ffz = O(r 2) and therefore from (5), it. follows that _7(_,0) = O(r-Z). So claim (iii)is

established.

Claim iv. The initial condition ff(£, 0) given by (1) sati,:fies the incompressibility condition.

Indeed, each of ff,(£, 0) and f(d) _'(£', 0) is divergence free.

The divergence condition can be shown to be valid directly by calculating the divergence

of the right hand side of (5), using the expressions for f(d[£, 0] and _'(£', 0) as shown above.

3. DYNAMICS

Given that the initial data is analytic in the real domain, it would appear reasonable to

assume the following, which is listed as

Assumption (i)

The initial value problem (1)-(3) with analytic initial o,ndition (5) has an analytic solution

in the real domain for t in some interval (0, to) for some to > 0.

Note: If an analytic solution to (1)-(3) does not exist beyond to, then we will have shown

that the analyticity width shrinks to zero in finite time. In that case, there is nothing more

to demonstrate. So, we will assume otherwise and let to = 0o.



We now defineffs(x, t), hence defined to be the background flow, to be

_s(e,t) - l-t -_xl-g x2, ?-xl-_x_, x3 ,

corresponding to which the vorticity a_s = V x ff_ is

¢2_ (:g, t) = 1-i [0, O, 1]

(14)

(15)

Notice that (14) and (15) satisfy the Euler equations (1)-(3), and are singular at t = 1,

though there are no spatial singularities; however, since it is unbounded at _, the energy

constraint (4) is not satisfied by ffs.

We define d(_, t) to be the solution to

dt + ffs V d = 0 (16)

satisfying initial condition (8). From the standard method of characterestics,

d(£(t),t) = d(£(0),0) = g(x_(O) + x_(O) + x_(0) ) (17)

along trajectories determined from

Solving (18),

where

da?
- ff_ (£-, t) (18)

dt

_(t) = [xl(t),x_(t),x_(t)]

x,(t) = Xl(O)(1-t)I/2coa [_ln(1-t)]

x2(t) = x2(O)(1-t)'/2 cos [_ ln(1-t) ]

- x2(0)(1 - t) 1/2 sin

x3(t) -

From (17)-(22), it follows that

(1d(:_,t) = g _ [x_+

We now decompose velocity ff(:_, t) and the vorticity w(_', t)

+ Xl(0)( 1 __ t)l[2 8i_2

x3(0)
1-t

=V×

(19)

[_ In(1-t) ] (20)

[_ ln(1-t) ] (21)

g(_, t) = ff_(_,t) + f (d[_, t])_{_, t)

ff(£, t) into

(22)

(23)

(24)



_(i,_) = ._.(i, t) + f'(d[i,t]) y(i,t) (25)

where initial condition (5) is satisfied. Then, in order for the vorticity _(1, t) and the velocity

if(l, t) to satisfy (1)-(3), it is clear on substitution that/7(i, t) and _'(1, t) must satisfy

j2 f,, f

V) ff_ + f (_. V) ¢+ Cf(Vd). (V × q-')+ f_. V( (26)+ (g.

fv.¢+¢. Vd=O (27)

ff-,v ¢+Vd _=/7× (28))<

The existence of analytic t7 (i, t) and _ (i, t) in the real domain, satisfying (26)-(28) for t

in the interval (0, 1) follows from assumption (i) and the decomposition (24) and (25).

We now introduce another assumption:

Assumption (ii)

t7(i, t) and (_(i, t) are analytically continuable upto the set of points 10(t), where d(10(t), t) = 0.

Further, each of V q, and V/7 is bounded at d = 0.

Remark: Since each of LL_ f and _ are continuous functions of d at d = 0, equations
tz

(26)-(28) can be seen to have continuous coefficients a; d = 0. So,/7(i,t) is expected to

be continuously differentiable at the set of points _'0(t), atleast for early time. Moreover, if

fi(io(t), t) is known apriori to be just a locally analytic function of t, then the results below

will hold for/7(._o(t), t) for all t in the interval (0, 1), regardless of the assumed boundedness

in assumption (ii).

We now define

We denote

d(t) = p-(x_0(t),t)

10(0) = (_,,,_)

Since d(i'o(0), 0) = g(_2 + r/2+ _-2)= 0, it follows that

(29)

(30)

(3_)

(2+r/2+_-2 = _1

From (23) and (29),

X(0) = 2 g'(-1) [ _, q, ¢] (32)



Further from (10) and (30), it followsthat

1/_(0) = 2 h'(-1) _ i-r/ (_2+r/2)__2,

It is clear that since d(_o(t),t)

(ii), (27) and (28)imply

/3 1 _2, 1 ]¥ _ (_2+ r/2)_ _ _ ¢ (_ + _)
J

(33)

= 0, each of f, f/f' are zero at d = 0, then with assumption

5.9 = 0 (34)

× _ = C (35)

It follows that

C × A = (A- A)B

Also, from (32), (33) and (35), it follows that

(36)

__ 1 /3 1C(0) = 4g'(-1) h'(-1) - _'(_2+r/2)-2r/C, -_-7/_'(_2+r/u) + 2_"

/3 C2(_ + _2) - _ )4 _ (_ + r/2)

Furthermore, with assumption (ii), it follows from (26) that

dC
dt - (_ "_)_ + TC

where T is a second rank tensor whose elements are defined by

Tjk- Ou_j
Oxk

In our case, the only nonzero elements of T are

1 1
Tll-- -T22, T33-

2(1-t) a-_

From (38), we get

(37)

(38)

(39)

dC sC (4a)
dt

where S is a second rank tensor whose elements are given by

Sjk = Tjk q- ejmAl ws" _ (42)
X:X

given that ejk_ is the usual Levi-Civita tensor and the Einstein summation convention on

repeated indices has been used.

'T12 = -T21 - 2(1 - t) (40)



For t > 0, it follows from (23) and (29) that

X(t)
2 g'(-1)

1-t

where £'o(t)

Using (20) and (21), it follows

[X,o(t), X_o(t),_1- t)z _o(t) ]

= [Xlo(t), x2o(t), X3o(t)] is determined from (20)-(22) with _o(0) = (_,

(43)

,,¢)-

._ _ 4g'2(-1) [(2+r]2 + (l-t) 3£2] (44)
1-t

Using (43) and (44) in the expression for S in (42), we find that the components of equation

(41) satisfy the following system of ordinary differential equations:

dt T,,CI + T12C2+ _+,]_+(l_t)a(2[(l-t)3X3o(t)C2- X2o(t)C3] (45)

(/3 [X2o(t) 6'3 - (1 -Q 3 X3o(t) C1] (46)
dC2dt - T2, C, + T22 C2 + _2 + 72 + (1_ 03( 2

dC______3dt= T33 C3 + _2 + 7?2 + (1 -- t)3_ 2 [X2°(t) C1 -- Xa°(t) C2] (47)

Exact solutions to this is possible when _ = 0 in which case each of the components C1, C2

o2 h'(-1) 3,is identically zero initally and remains so for t > O. Using g'(-1) - (2_2-1):, =

it follows from (37) and (47) that the third component of C is given by

3a2_ (48)
C3(t) = -(2a2 - 1) 7 (1 .- t)

Therefore for ¢ = O,

d(t) = 3_2fi
(2a 2-1) 2 (l-t)

It follows from (37), (43) and (44) that in such cases

:0, 0, 1) (49)

3_ [_,--_, O]
B(t) - 2(1--_)'/2

(50)

It is clear from (49) and (50) and the definitions (29)-(31) that each of p_o(t),t) and

q-_o(t), t) is singular as t --_ 1-, at the same time as complex singular points

Zo(t) = (x,0(t), =_0(t),0),

determined from (20) and (21) approaches (0, O, 0) as (1- t) '/2.

Since the total vorticity is given by (25), it follows th at sufficiently close to these complex

singular points io(t),

fl [0, 0, 11 + 1 [A,(t) (_ - _o(t))]-1/2 C(t) (51)_(_,t) ~ ]---25



where .A(t) is determined from (43) (with Xao(t) = 0 in this case) and C(t) is determined

from (49). It is clear from (50) that the singularities of ,5, and f'(d) # do not cancel out as

t _ 1- at _0(t).

In the general case, when ( -¢ 0, (45)-(47) do not appear to be exactly solvable.

Nonetheless, asymptotic considerations suggest that in such cases, all components of C(t)

generally become singular as t --_ 1-.

4. IMPLICATIONS OF THE CALCULATIONS

The results (51) in the complex plane together with the result that certain class of initially

complex singularities _0(t) impinge (0,0,0) in finite time, would appear to suggest that the

initial value problem (1)-(3) with initial condition (5) becomes singular in the real domain

in finite time. This would be true if one can assume the following:

Assumption (iii)

If analytic solution to (1)-(3) with initial condition (5) exist for t in (0, 1), then as t --_ 1-,

one or more singularities aT0(t), whose nonzero components are computed through (21) and

(22), is located on the same Riemann sheet as the real physical domain.

Note: If assumption (iii) is correct, then the point (0,0,0) at which _'0(t) impinges will

actually be part of the physical real domain and not of another Riemann sheet.

In the event that assumption (iii) is valid, then the calculations in section 3 show that

that there must be a collapsing physical length scale near the origin, proportional to (1 -t) 1/_,

corresponding to the complex singularity distance from the real domain. This is in addition

to the length scale associated with ff_(_s, t) in (14) that obviously scales as (1 - t). This was

suggested by Bhattacharjee et al is.

Another point to note about the superposition (25) is that for a fixed real i different

from 0, as t _ 1-, _ need not be singular; temporal singularities in _s can cancel out that

of f'(d) #, as we suspect it will, though we are unable to demonstrate this convincingly.

The arguments above are not applicable if the solution to (1)-(3) cease to be analytic

in the real domain for t < 1, as can happen if complex singularities of/7, created in the

dynamical process, impinges the real domain for t < 1. Note that for small a 2, there exists

complex poles of g(r 2) and hence of d(_, 0) near r 2 - 1.- -_, from examination of (26)-(27), it

is clear that singularities of/7 are expected to be created at such points at t = 0 +.

Whatever the case, our calculations above show that if assumptions (i)-(iii) are valid,

then the solution to (1)-(3) ceases to be analytic in the real domain beyond t = 1. It would

be interesting to check these numerically through schemes that monitor the analyticity width

as a function of t. Determination of the physical nature of such singularities, if they occur,

will also be interesting.



5. CONCLUSION

We have considered an initial condition for the three dimensional Euler equation that

is analytic in the real :_ domain and contains finite energy. By making three clearly stated

assumptions, we find through explicit calculations that the solution must lose analyticity in

finite time. Further study, both analytical and numerical, is likely to shed some light on

the validity of the assumptions. If these assumptions are true, numerical calculations is also

likely to suggest if the solution loses analyticity before t = 1 or if it does so at t = 1 in the

manner shown explicitly in this paper.
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